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Generating recoverable reserves is a critical step in mining geostatistics. A methodology to generate
recoverable reserves at large panel and selective mining unit (SMU) scale will be discussed. This paper is
an extension of paper number 304 — Local Recoverable Reserves Prediction with Block LU Simulation.
The software presented will expand the program, BLUSIM, to include cosimulation of multiple variables.
The LU method of simulation allows for fast simultaneous generation of realizations for reserve
calculation. An LMC model for the variables is required for the multivariate version of BLUSIM.

Introduction

The motivation for considering an LU block simulation method is discussed in detail in paper #304 in this
report. To summarize: the simulation method of ore reserve calculation allows for the incorporation of
secondary data, can be upscaled to any model resolution and can consider trends in the data. The major
drawback of simulation techniques is the size of the necessary fine scale model and the requirement to store
and process the realizations. The LU block simulation method proposed in this paper allows for the
simultaneous generation of all necessary realizations and eliminates the need to store realizations.

BLUSIM is modified to incorporate simulation of multiple variables at multiple locations in one step. This
will allow for the incorporation of (1) data of different types and (2) different variables. (1) Often there are
discrepancies between blast hole and exploration drill hole data for the same variable. Incorporating a
multivariate version of block LU simulation allows the modeler to consider data of different types
simultaneously; for example, blasthole data would be used as a secondary correlated variable for the
simulation of the more reliable diamond exploration data. (2) Often there are many secondary variables
that can provide additional information to the variable of interest. In this instance the multivariate version
of block LU simulation can be used to better inform the variable of interest with the secondary information.

A program, BLUSIM_MV, will be discussed that requires an LMC model to define the multivariate
distribution between any number of data types and generates estimates of panel mean and variance with
block LU simulation. The multiple variables used need not be colocated. A case study of a nickel deposit
with four variables of interest will highlight the usage of the program in the multivariate sense.

Methodology

This methodology will consider a local independent LU simulation of the panels. Data near each panel are
used to simulate in the panel and the corresponding panel mean and variance are stored. This eliminates
the need to store the high resolution geostatistical model. Moreover, LU simulation is used because it is an
efficient algorithm for a small number of nodes. It would be inappropriate to use LU simulation to generate
a high resolution model of the entire field because of the size of the resulting fine scale model; therefore,
each panel is discretized and LU simulation is performed independently within each panel to generate the
fine scale model.

LU simulation has been developed for the joint simulation of multiple data locations (see paper 304 in this
report), but it requires modification to consider simulating multiple data types at multiple locations within
the panel. The LU simulation of multiple locations considering only one variable requires the following
covariance matrix:
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C contains four smaller sub matrices, Cy;, C1p, C and C,, (with C1o= C,,"). The Cyy matrix contains the
data to data covariance, equation 2. The C;, matrix contains the data to simulation location covariance,
equation 3. The C,, matrix contains the simulation location to simulation location covariance, equation 4.
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C, = : : 4)

c(Vy, V) o C(Vy, VY,

where the u indicates the n data locations and v denotes the m simulation locations in the panel.

Now, consider the addition of multiple data types. The Cy; matrix will now contain the cross-covariance
between all data types and the number of simulation locations will increase. The matrices will have the
following form:

Cequlul) . c(u;,u;) c(uy,uf) .. c(upup) ]
c(uy,up) .. c(uy,uy) U, u’) .. c(uy,up)
C,= : : : : (5)
c(uf,uy) .. o(uf,uy) cu/,u’) .. c(uf,up)
3 - : :
_c(un"p,ul) e (U Uy) cup ,uf) .. c(un"p,un"p)_
c(u;,v) .. c(uf,vi,) cup,v) ey )
c(us Vi) - c(Up, Vi) c(ur ,VP) .. oy, vin) o
C,=| o 5 6
c(uf,vg) .. U, vy,) cul W) o c(uf,vy )
: ) . . . :
_C(Ufval) o O(Up V) oug ) (U vy ) |
(V) e o(vV) (V) . c(vv) ]
1. 1 1: 1 : l.
C(Vi Vi) o €V, s Vi) c(va,vf) c(vml,vr’;p) -
c,=| ! N s 7
eV V) e (v V) c(v V) .. c(v,vy )
: L : . : :
_c(vnﬁp,vl) e C(Vp Vi c(vp V) c(vn‘}p,vnﬁp)_

where u” indicates n, data locations of variable type p and v* indicates m, simulation locations of variable
type p.

Once these covariance matrices are set up traditional LU simulation can be used to decompose the resulting
C matrix and generate multiple realizations at all locations for all p data types. Figure 1 more clearly
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demonstrates the meaning of the covariance matrices with an example. The symbols are used to denote
data and simulation locations of different types and the necessary covariances can be visualized.

Implementation

BLUSIM_MV is a FORTRAN program that requires an input parameter file. The details of each line of
the parameter file (Figure 2) follow:

Line5 — Name of the data file.

Line 6 — The parameter file contains a separate line for EACH data point, even collocated data must be
reformatted to be multiple entries in the data file. The variable type (ID) must also be indicated
in the data file. The ID is 1 through to the number of variables consecutively, no ID numbers can
be skipped. Only one column is required for the variable (ID is used to distinguish variable
type). A declustering weight can also be added.

Line 7 — The number of variables must equal the highest ID of the variables in the data file. If fewer
variables are selected to simulate, all variables are simulated and only the requested ones are
output.

Line 8 — ID of the variables to simulate.
Line 9 — Trimming limits for the variables. The same trimming limits are placed on all data.

Line 10 — Option to transform the data. If the data are already transformed the output will average the
normal scored values, it is better to let the program transform the data.

Line 11 — File for the transformation table to be output.

Line 12-14 — If desired, a transformation table can be included for the variables. This is in one file with
each column representing a different variable.

Line 15-17 — Parameters to transform the variables. Each line must contain 2 parameters for each variable,
for each of these lines there will be (nvar*2) parameters on the line.

Line 18-19 — Debugging information.

Line 20 — Output file name.

Line 21 — Number of realizations.

Line 22-24 — Grid defining the panels.

Line 25 — Number of discretization points per panel.

Line 26 — Number of selective mining units per panel, if number of discretization points divided by number
of SMU’s in each direction is not a whole number there will be fewer discretization points in
some SMU blocks and the output will be nonsensical.

Line 27-30 — Cutoffs to report and option to consider equivalent grade. Requires a factor for each data
simulated.

Line 31-32 — Option to write out all SMU realizations, if there are many realizations this file may be large.
Line 33 — Random number.

Line 34 — Minimum and maximum number of data to use in simulation. This can be different for each
variable type considered. To consider only one min/max based on the total number of data
rather than by data type, the third number should be set to -1.

Line 35 — Consider an octant search.
Line 36-37 — Search information. This will be used for all data types.

Remaining lines — These lines define an LMC. Any LMC defined must be positive definite and is checked
by the program. To consider a Markov Model, specify it in the form of cross
variograms (i.e. multiply the contributions of the structures by the correlation).
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Case Study

The following case study will demonstrate the methodology. The available data is a nickel deposit with
four variables (Ni, Fe, MgO and Co, data is shown in Figure 3). All variables will be simulated at the panel
scale and the resulting distributions analyzed.

First, an LMC must be developed. It is often tedious to generate an LMC for four variables as a total of 10
variograms must be modeled while maintaining positive definiteness. VARFIT_LMC will be used to
automatically fit the LMC of the 4 variables of interest. Figure 4 shows the resulting LMC after each
variable has been normal score transformed.

The panel scale averages are shown in Figure 5. Moreover, BLUSIM (univariate) was considered for each
variable where all variables are simulated independently; the resulting panel scale distributions can be
compared to the multivariate case (Figure 6).

Recall that LU simulation was selected because it is efficient for solving small matrices. When considering
multiple data types and large levels of discretization, the resulting LU simulation can become CPU
intensive. Figure 7 shows how the CPU time for BLUSIM_MV varies with the input parameters. The
basic parameters for the time trails follow:

e Number of discretization points per panel = 8 (2x2x2)
e Number of variables = 3

e Number of panels = 400

e  Maximum number of data used = 15 (5+5+5)

e Number of realizations = 1000

For each graph in Figure 7 one of the above parameters is varied while the others remain constant.

The program CPU time is linearly dependent on the number of variables, panels and simulations; there is a
cubic relationship to the number of data used in simulation and the number of discretization points.
Examining the coefficients of the fitted functions in Figure 7 it can be seen that number of data types used
has a large effect, an increase from 1 to 4 data types quintuples the CPU time. Moreover, the number of
discretization points also has a significant impact on the CPU.

Conclusions and Future Work

A program to use LU simulation to simulate the panel scale distribution of multiple variables
simultaneously has been presented. The panels are discretized and the mean, variance, grade above a cutoff
and equivalent grade for a panel are calculated. This saves the memory requirements of storing the fine
scale model. Each panel is simulated independently. The resulting panel distributions (Gaussian mean and
variance) can be used in further transfer functions or to calculate reserves/resources.

Future work for this algorithm will focus on improving CPU speed. The first idea is to only simulate the
variables of interest, currently all variables are simulated. The C,, matrix would consider the discretization
points of only those variables that are to be output. This will reduce the size of the matrix if the number of
variables of interest is smaller than the total number of variables available. The second idea is to invert a
submatrix of C only once and will take advantage of the structure of the C matrix; C,; is constant. It would
be possible to take the inverse of C,, once and use linear algebra with the inverse of Cy; to find the inverse
of C. Because Cy, is a large portion of C, this will significantly improve CPU speed, at each panel only the
inverse of the smaller matrix Cy; is required.
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Figure 1: Example showing details of covariance matrices. The example on the left has 5 data (3 of type A
and 2 of type B). Simulation will be performed in the panel (mining volume) at 18 simulation locations (9
of type A and 9 of type B). The resulting covariance matrices are shown on the right. Recall C1,=C,;".

1 Parameters for BLUSIM_MV

2

3

4 START OF PARAMETERS:

5 data.dat file with data

6 4569810 columns for X,Y,Z,varlD, var,wt

7 32 number of variables, number to simulate
8 1 3 ID of variables to simulate

9 -1 1.0e21 trimming limits

10 transform the data (0=no, 1=yes)

11 blusim.trn file for output trans table

12 0 consider ref. dist (0=no, 1=yes)

13 histsmth.out file with ref. dist distribution

141 2345678 columns for vrl and wtl, vr2 and wt2...
150119220 zmin,zmax(tail extrapolation)

16 1 201 20 1 20 1 20 lower tail option, parameter
1711111111 upper tail option, parameter

18 0 debugging level: 0,1,2,3

19 blusim.dbg file for debugging output

20 blusim.out file for output

21 1000 number of realizations to generate

22 10 50 100 nx,xmn,xsiz - Panel Size

23 10 50 100 ny,ymn,ysiz

24 10 50 20 nz,zmn,zsiz

25 333 nbx,nby,nbz- SMUs per Panel

26 6 6 6 X,y and z block discretization

27 2 number of cutoffs for reporting

28 4 5 cutoffs, will report statistics for information above
29 0 option to consider equivalent grade

30 1 0.8 0.6 for each variable SIMULATED need a factor
31 0 option to output all SMU realizations (0=no)
32 SMUreals.out file for the SMU realizations

33 67515 random number seed

341101101 10 1 10 min, max data for Kriging

35 0 max per octant (0-> not used)

36 155 155 155 maximum search radii

37 0.0 0.0 0.0 angles for search ellipsoid

3811 Semivariogram for 1 and 1

39 2 0.001 nst, nugget effect

40 1 0.892 35.0 0.0 0.0 it,cc,angl,ang2,ang3

41  37.796 30 3.7796 a_hmax,a_hmin,a_vert

42 1 0.107 35.0 0.0 0.0 it,cc,angl,ang2,ang3
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43  195.610 156.488 19.56
44 1 2

45 2 0.001

46 1 0.340 35.0 0.0 0.0

47 37.796 30 3.7796

48 1 0.239 35.0 0.0 0.0

49  195.610 156.488 19.56
50 13

51 2 0.001

52 1 -0.295 35.0 0.0 0.0

53 37.796 30 3.7796

54 1 -0.170 35.0 0.0 0.0

55 195.610 156.488 19.56
56 2 2

57 2 0.001

58 1 0.426 35.0 0.0 0.0

59 37.796 30 3.7796

60 1 0.573 35.0 0.0 0.0

61 195.610 156.488 19.56
62 2 3

63 2 0.001

64 1 -0.409 35.0 0.0 0.0

65 37.796 30 3.7796

66 1 -0.391 35.0 0.0 0.0

67 195.610 156.488 19.56
68 3 3

69 2 0.001

70 1 0.675 35.0 0.0 0.0

71 37.796 30 3.7796

72 1 0.324 35.0 0.0 0.0

73 195.610 156.488 19.56

a_hmax,a_hmin,a_vert
Semivariogram for 1 and
nst, nugget effect
it,cc,angl,ang2,ang3
a_hmax,a_hmin,a_vert
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
Semivariogram for 1 and
nst, nugget effect
it,cc,angl,ang2,ang3
a_hmax,a_hmin,a_vert
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
Semivariogram for 2 and
nst, nugget effect
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
Semivariogram for 2 and
nst, nugget effect
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
Semivariogram for 3 and
nst, nugget effect
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert
it,cc,angl,ang2,ang3
hmax,a_hmin,a_vert

Figure 2: Parameter file for BLUSIM_MV.
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Figure 3: Location of data for the case study.
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Figure 4: 10 variograms and cross variograms that define the LMC for 4 variables of interest (variable 1 =

Ni, variable 2 = Fe, variable 3 = MgO, variable 4 = Co).
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Figure 4 continued: 10 variograms and cross variograms that define the LMC for the 4 variables of
interest (variable 1 = Ni, variable 2 = Fe, variable 3 = MgO, variable 4 = Co).

Pannel scale Mean Ni - Pannel scale variance Ni

East East

0.1

Figure 5: Above left, one point scale realization of Nickel. Above right, one SMU scale realization of
Nickel. Below left, the panel scale mean of Nickel, each panel is the average of 1000 realizations at the
point scale. Below right, the panel scale variance of Nickel.
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Figure 6: Above, panel scale distributions considering the
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scale distributions considering that each variable is modeled independently (BLUSIM).
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Figure 7: Time trials for the case study. The effect of the number of discretization points, panels, data,

data types used, and realizations is on the CPU time is shown.



